Towards sustainable agriculture by robotics technologies
By Amos Albert, CEO of Bosch Deepfield Robotics
Bosch Deepfield Robotics

Content of this talk

➤ Why?

➤ How?

➤ Now?
Bosch Deepfield Robotics

World demands for a sustainable green revolution

Shortage of resources

- increasing world population
- changing eating habits
- vulnerable to and cause of climate changes

- arable land
- water
- plant protection
- workforce
Bosch Deepfield Robotics

Transfer barriers (from research to production)

3 dimensions of uncertainty:

- **New** technology
- **New** customers
- **New** busin. model

≥2 dimensions **new** ➞ no transfer!

- Domestic robots: comfort, quality of life
- Personal mobility: comfort and safety
- Human-robot collaboration: Productivity

What about agricultural robotics?

Internal | BOSP/PAA | 11/11/2015 | © Robert Bosch GmbH 2013. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Bosch Deepfield Robotics

How to bridge the gap?
DEEPFIELD Robotics

Bosch Start-up for Agricultural Robotics
Bosch Deepfield Robotics

Bosch Start-up Platform (BOSP) and its Services

BOSP = detached legal entity featuring small and agile teams, running an explorative market development
Strategic Alignment

<table>
<thead>
<tr>
<th>Keep competitive</th>
<th>grow</th>
<th>create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution</td>
<td>Revolution</td>
<td>M&A</td>
</tr>
<tr>
<td>Product Development: Improve performance reduce cost</td>
<td>Technology diversification, new products in existing markets</td>
<td>Acquire access to new markets, competence, resources</td>
</tr>
<tr>
<td>Sustain</td>
<td>Extend</td>
<td>Build</td>
</tr>
<tr>
<td>existing business</td>
<td>existing business</td>
<td>new business</td>
</tr>
</tbody>
</table>

- **Uncertainty**
- **Bosch Start-up Platform**

Bosch Deepfield Robotics
Phases in Bosch Start-up Platform
(from Robert Bosch GmbH, via Start-up, to Robert Bosch GmbH)
Deepfield Robotics @ Agritechnica (hall 9, booth F02)

- Mechanical weed control
- Connectivity solutions (intelligent sensor network)
- Automated field testing
- Multi-functional platform BoniRob
The start of all: Evolution of BoniRob

2008-2011

Single use case: phenotyping

2011-2014

Multi-purpose agricultural robot

2015-

Rugged design version available for customers
Acknowledgements to much more co-workers
Bosch Deepfield Robotics

The BoniRob: A Multi-Purpose Agricultural Robot

- Powered by batteries and a fuel-based range extender
- Slot for Application Module (electrical & data-link to robot)
- Reconfigurable joints (adaptive trackwidth)
- Easy exchange of application modules
- High connectivity (5GHz Wi-Fi, 2.4 GHz Wi-Fi, GSM/UMTS/LTE optional)
- 3D sensing for autonomous navigation in row-based cultivations (optionally navigation based on GPS)
- Total of 12 degrees of freedom

BoniRob Quick Facts:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>2.2 m x 1.3-2.4 m x 1.8-2.8 m (height x width x length) (dep. on track width)</td>
</tr>
<tr>
<td>Clear height / Tare weight</td>
<td>Approx 0.85 m / approx 1090 kg</td>
</tr>
<tr>
<td>Track width</td>
<td>1.0 – 1.9 m (electrically driven)</td>
</tr>
<tr>
<td>Wheels, Speed</td>
<td>0.55 m / 0.2 m (diameter / width), speed: up to 150 cm/sec</td>
</tr>
<tr>
<td>Power</td>
<td>24V, 230 AH Batteries, 2.6kW Generator, up to 24h operation without refueling</td>
</tr>
<tr>
<td>Payload</td>
<td>150 kg for customized application module</td>
</tr>
<tr>
<td>On-Board PC</td>
<td>i7-based Industrial PC running Linux. Robot is fully integrated into ROS + Gazebo</td>
</tr>
</tbody>
</table>
Bosch Deepfield Robotics

The BoniRob: Basic Modules

Robot sensors:

Different Apps

App A

sensors / actuators / functions

Drive ECU

Remote control and safety circuit

High Level Navigation ECU

App B

sensors / actuators / functions

High Level Navigation and Control
(Industrial PC, ROS); Simulation in Gazebo

Low-Level Control, Safety
(embedded real-time system)

Low Level Control, Safety

Propulsion
Steering
Track width

Remote technol.

Drive ECU

High Level

Hilux

Remote control and safety circuit

Different Apps

App A

sensors / actuators / functions

Drive ECU

Remote control and safety circuit

High Level Navigation ECU

App B

sensors / actuators / functions

Drive ECU

Remote control and safety circuit

High Level Navigation ECU

App C

Customized Application Modules
(Communication via ROS)

High-Level Navigation and Control
(Industrial PC, ROS); Simulation in Gazebo

Low-Level Control, Safety
(embedded real-time system)

High-Level Navigation and Control
(Industrial PC, ROS); Simulation in Gazebo

Low-Level Control, Safety
(embedded real-time system)

Different Apps

App A

sensors / actuators / functions

Drive ECU

Remote control and safety circuit

High Level Navigation ECU

App B

sensors / actuators / functions

Drive ECU

Remote control and safety circuit

High Level Navigation ECU

App C

Customized Application Modules
(Communication via ROS)

High-Level Navigation and Control
(Industrial PC, ROS); Simulation in Gazebo

Low-Level Control, Safety
(embedded real-time system)

Different Apps

App A

sensors / actuators / functions

Drive ECU

Remote control and safety circuit

High Level Navigation ECU

App B

sensors / actuators / functions

Drive ECU

Remote control and safety circuit

High Level Navigation ECU

App C

Customized Application Modules
(Communication via ROS)
Autonomous Navigation, Semantic Localization, and Mapping

U. WEISS et.al., “Semantic Place Classification and Mapping for Autonomous Agricultural Robots”, IROS 2010
Bosch Deepfield Robotics

Autonomous Machines
Precision/Smart Farming
Monitor Environment and Plants
Reduce Costs / Enable Organic Farming

We need a “Sustainable Green Revolution”

Navigation
Phenotyping
Soil Monitoring
Pres. Spraying
Weeding
Nursing

Weed Monitoring and Plants Reduce Costs / Enable Organic Farming

16
Pictures from then and now: manufacturing BoniRob V3
Bosch Deepfield Robotics

Mechanical in-row Weed Control

watch videos www.deepfield-robotics.com
Bosch Deepfield Robotics

Source: Langsenkamp et al., *Tube stamp for mechanical intra-row individual plant weed control*, 18th World Congress CIGR (2014)
Bosch Deepfield Robotics

Deepfield Connect – Asparagus Monitoring

watch videos www.deepfield-robotics.com

Conventional asparagus cultivation

Best growth at 20°C
Best profit from asparagus season

Control via cover sheet

Consider weather forecast

▼ BETTER YIELD ▼ BETTER QUALITY ▼ BETTER DECISIONS ▼

The Bosch innovation project

Temperature tracking with connected sensors

Asparagus farmer

Sensor kit

FUTURE
- Foil placement recommendation
- Temperature prediction
- Yield prediction
- Dashboard for consultants
- Other crops
Bosch Deepfield Robotics

Automated field testing for plant breeding

Plant Breeding
- Increases yield
- Robustifies plants
- ……

… is the key to feed and fuel the world

Hypothesis
Breeders are desperate to automate their (outdoor) business

Today Plant Breeders
- Manually **screen large amounts** of plants
- Need **10+ years** to create a new sort
Bosch Deepfield Robotics

Seed Quality Field Trials
for Seed Production

watch videos www.deepfield-robotics.com

Conventional Seed quality field trials

TODAY

Every year from March till June

Weather dependent

Much of manual work

TOMORROW

High Throughput Field Screening

Day-to-Day Germination Rate + Plant-by-Plant 3D Leaf Area + Related Weather Conditions

Automated Workflow

High Quality Data

Improved Seed Treatment based on better decisions

www.deepfield-robotics.com
Bosch Deepfield Robotics

Field Trial Automation – 4D Sensing

The same emerging plant detected and reidentified over several days (4th dimension)

Emerging Plants Counting and Leaf Area estimation

- Point Cloud construction
- 3D Leaf area computation
- Reproducable measurements (1 h/d)
Bosch Deepfield Robotics

One team – many experts

Talk to us
visit our website

www.deepfield-robotics.com